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ABSTRACT 
 

Uniqueness of solution at a scheme choice for the restorable power system on the artificial 
neural network (ANN) base is shown. The elementary scheme of a power network is used for 
this purpose and the subsequent distribution of its results is applied on any network 
configuration. The way of priority accounting for loads is developed at creation of the 
restorable power system on the base of the proof on solution uniqueness for ANN. 
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1. INTRODUCTION 
 

Power supply restoration with mode restrictions after blackouts is an important component of 
operational reliability for power networks [1-3]. This task is difficult for finding of an acceptable 
solution in the conditions of rigid time constraint because of a large number of sources, consumers 
and the switching devices. The use of the neural network technique together with graph processing 
algorithm for its solution was discussed earlier [4-6]. Such combination allows significant 
accelerating for a solution search, and self-training using of the artificial neural networks (ANN) 
expands a mode variation area.  

Without stopping in details on the basic provisions [4], we want to note, the combination 
selection of a line breaker state for a power network, offered by ANN, is executed by the mode 
calculation block (MCB). It checks validity of the received combination on mode conditions and the 
generalized error vector, which controls ANN solution search. It is obvious; such process should not 
lead to a situation, when the last offered combination: a) repeats one of the previous ones, b) is 
situated farther of a required solution, than previous ones. The satisfaction of these constraints 
defines stability and convergence of the search.  

On basis of back propagation algorithm for ANN training [7], it is possible to state, at the 
specified input data the ANN will aim to configure the weighting coefficients, to get the required 
response on an output, which set a difference of the current ANN 
response and an error in our case [5]. Thus, for the proof of solution 
stability it is required to show convergence of an mismatch error for 
the current and required ANN responses. 

 
2. A SOLUTION CONVERGENCE 

 
We begin the convergence proof with consideration of an 

elementary case for three circuits united in the triangular scheme 
(fig. 1). We admit there are no sources and loadings in a node x3 for 
simplification of situation. We construct circuit states by search 
method of all possible options in the mode of ANN self-training on 
the scheme base. Since the proof is carried out for a circuit breaker 

Figure 1. The elementary cell  
of a power network. 
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state, target parameter considers the consumer providing with active power. Voltage level 
restrictions in nodes and currents in circuit are assigned to MCB. 

Reaction of the error forming algorithm to all possible breaker state combinations for a 
distribution network and ANN responses to them is shown in tab. 1. Here ORS – operational 
restrictions on breakers of a distribution network: 1 – operations are allowed with the breaker, 0 – 
operations are prohibited with the breaker. ANN – the breaker state is offered ANN: 1 – the breaker 
is switched on, 0 – the breaker is switched off. MCB – a network state is after MCB work: 1 – the 
breaker is switched on, 0 – the breaker is switched off. The n-th approximation error: 1 – the 
unallowable switching on because of the mode revealed by the error shaping block in MCB after its 
work. X,Y,Z – circuit breakers (fig. 1). 

 
Table 1. Forming stages of an error vector for all possible breaker state combinations of a network 

and an ANN response 
 

ANN ORS MCB An error of 1-
st approx.  

An error of 2-
nd approx.  

An error of 3-
rd approx.  

Combination 
# XYZ XYZ XYZ 

000 000 000 000 – – 0,0 
000 001 000 001 – – 0,1 
000 010 000 010 – – 0,2 
000 011 000 011 – – 0,3 
000 100 000 000 – – 0,4 
000 101 000 001 100 000 0,5 
000 110 000 010 100 000 0,6 
000 111 000 011 000 – 0,7 

       
001 000 000 001 000 – 1,0 
001 001 001 001 000 – 1,1 
001 010 000 011 000 – 1,2 
001 011 001 011 000 – 1,3 
001 100 000 001 000 – 1,4 
001 101 001 101 000 – 1,5 
001 110 000 011 100 000 1,6 
001 111 001 011 000 – 1,7 

       
010 000 000 010 000 – 2,0 
010 001 000 011 000 – 2,1 
010 010 010 000 – – 2,2 
010 011 010 001 000 – 2,3 
010 100 000 010 000 – 2,4 
010 101 000 011 000 – 2,5 
010 110 010 100 000 – 2,6 
010 111 010 001 000 – 2,7 

       
011 000 000 011 000 – 3,0 
011 001 001 010 000 – 3,1 
011 010 010 001 000 – 3,2 
011 011 011 000 – – 3,3 
011 100 000 011 000 – 3,4 
011 101 001 110 000 – 3,5 
011 110 010 101 000 – 3,6 
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continuation of table 1 
ANN ORS MCB An error of 1-

st approx.  
An error of 2-

nd approx.  
An error of 3-

rd approx.  
Combination 

# XYZ XYZ XYZ 
011 111 011 000 – – 3,7 

       
100 000 000 100 000 – 4,0 
100 001 000 101 000 – 4,1 
100 010 000 110 000 – 4,2 
100 011 000 111 000 – 4,3 
100 100 000 100 – – 4,4 
100 101 000 101 100 000 4,5 (!) 
100 110 000 110 100 000 4,6 (!) 
100 111 000 111 000 – 4,7 

       
101 000 000 101 000 – 5,0 
101 001 001 100 000 – 5,1 
101 010 000 111 000 – 5,2 
101 011 001 110 000 – 5,3 
101 100 000 101 000 – 5,4 
101 101 101 000 – – 5,5 
101 110 000 111 100 – 5,6 (!) 
101 111 101 000 – – 5,7 

       
110 000 000 110 000 – 6,0 
110 001 000 111 000 – 6,1 
110 010 010 100 000 – 6,2 
110 011 010 101 000 – 6,3 
110 100 000 110 000 – 6,4 
110 101 000 111 100 – 6,5 (!) 
110 110 110 000 – – 6,6 
110 111 110 000 – – 6,7 

       
111 000 000 111 000 – 7,0 
111 001 001 110 000 – 7,1 
111 010 010 101 000 – 7,2 
111 011 011 100 000 – 7,3 
111 100 000 111 000 – 7,4 
111 101 101 010 000 – 7,5 
111 110 110 001 000 – 7,6 
111 111 011 100 000 – 7,7 

 
Since the error is equal to zero after several iterations for all considered cases, the assumption 

of a solution convergence for the power network scheme (fig. 1) is established. It is necessary to 
consider separately the cases noted by a sign "(!)". Here at the initial stage the error indicates circuit 
switch on, inadmissible on mode conditions. This circuit will be switched on nevertheless, but at 
other admissible state combination of breakers. It occurs because the error-shaping block forbids 
circuit switch on for the studied combination in this case because of mode restrictions, but search of 
the correct solution remains for ANN. 

Now we will consider a case of a power network from any number of circuits, sources and 
consumers. Let's, ௞ܸ = 1, if a voltage isn’t in the node k, and ௞ܸ = 0, if the node k is connected 
correctly. Function ௠݂௢ௗ is determined as the sum of all nodes ௞ܸ , i.e. ௠݂௢ௗ = ∑ ௞ܸ

௡
௞ୀଵ , where n is 

number of nodes, and min( ௠݂௢ௗ) is the sum of all ௞ܸ , which can’t be provided with the electric 
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power in the current network configuration because of mode and other restrictions, for example, for 
single line that is impossible to switch on. 

When the first ANN response (ܫ)̅ is received), it is checked by MCB, then the vector of the 
generalized error (ܧത) is formed for the current response. As a result, some solution (a required 
response) ( തܴ) is formed, to which it is necessary to lead the current response, i.e. തܴ = ܫ ̅ −  ത. The തܴܧ
definition initializes BP algorithm. ANN weighting coefficients change so that ܫ ̅ → തܴ. When ܫ  ̅will 
change (the state at least of one network line will change), training activity stops, a new ANN 
response ܫଵ̅ forms ܧതଵ	and	 തܴଵ, then the training algorithm is started again. The training cycle is 
repeated, while ௠݂௢ௗ > min( ௠݂௢ௗ). 

Really when forming ܧത there is a continuous updating തܴ, until തܴ become a valid solution, i.e. 
equality will be executed ௠݂௢ௗ( തܴ) = min൫ ௠݂௢ௗ( തܴ)൯. If to prove that ௠݂௢ௗ constantly aims to 
min( ௠݂௢ௗ), it will be proved that any problem can be solved for a finite number of iterations, i.e. 
computation process is stable. 

It is obvious from forming of an error vector algorithm [5] that only one line is considered at 
the same time. Let's designate it as X line from x1 top to x2 top. Then all other power network graph 
can simplify for forming time of an error vector for the considered line as the next ways: 

1) if X line (switching on) has a available power source Pavailable. (it is admissible in the x1 
node), and some available / consumed power P± is available in the x3 node, the graph is minimized 

to presented it on fig. 2. Thus, all other network can be 
minimized to relative Y line, which characterizes possibility to 
give power from x3 to x1 (operations with Y are prohibited in the 
presence Pavailable. and P+), and to relative Z line, which 
considering possibility to provide the x2 loading through the x3 
node, and also P± , which can be to receive/deliver through Z or 
Y. Here P± is meant that the node can be a source, a consumer or 
their combination. P+ and Pavailable can have both one source and 
different ones. Then the graph convergence of a power network 
is considered in tab. 1 (a combination 2, 7). If Z line is absent / is 
prohibited to switching on, the combination 2, 3 corresponds 
from tab. 1 to this case. If Y line is absent / is prohibited to 
switching on, the combination 2, 6 corresponds from tab. 1 to 
this case. If Z and Y lines are absent / are prohibited to switching 
on, the combination 2, 2 corresponds from tab. 1 to this case. 

2) If Pavailable. is in the x1 node and the x2 node is provided with the power through Z line, the 
network can be minimized to presented it on fig. 3. In this case 
Y line characterizes possibility of power transfer to the x1 or x2 
nodes by a different way. It is considered in tab. 1 (a 
combination 4, 7). If Z line is absent / is prohibited to 
switching on, from tab. 1 the combination 4, 6 corresponds 
from tab. 1 to this case.  If Y line is absent / is prohibited to 
switching on, from tab. 1 the combination 4, 3 corresponds 
from tab. 1 to this case. If Z and Y lines are absent / are 
prohibited to switching on, the combination 4, 2 corresponds 
from tab. 1 to this case. 

It is obvious that two described above a case are almost 
identical and easily pass one in other replacement of X line by 
Z and vice versa, but they show in couple as ANN training will 
behave, when finding the best option of power transfer to the 
consumer, which is already provided with energy.  

Figure 2. Scheme of network with 
three lines and available power  

in x1 node.  
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Figure 3. Scheme of network with 
available power in x1 and x3 nodes.  
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3) If the x1 and x2 nodes are not connected to a source, 
the simplified network graph corresponds to it on fig. 4 
where Y line allows connecting the x1 node, and Z line 
allows connecting the x2 node. This case is provided to tab. 
1 (a combination 0, 7). If Z line is absent / is prohibited to 
switching on, the combination 0, 6 corresponds from tab 1 
to this case. If Y line is absent / is prohibited to switching 
on, the combination 0, 3 corresponds from tab. 1 to this 
case. If Z and Y lines are absent / are prohibited to switching 
on, the combination 0, 2 corresponds from tab. 1 to this 
case. 

After forming of an error for X line =Xi the program 
passes to forming of an error for other lines X=Xk. There are considered the simplified network 
graph representations, and Xi can belong now both Y line, and Z line for new minimized graphs. 

The similar is executed for all lines of the network graph then forming process of an error 
comes to an end, ANN training procedure is executed to change of its response. Thus, function 
௠݂௢ௗ changes towards reduction. The further forming procedure of the generalized error and ANN 

training repeats necessary number of times, until the condition ௠݂௢ௗ = min( ௠݂௢ௗ) will be satisfied. 
Thus, it is proved that each subsequent solution does not increase the search function of 

combinations ௠݂௢ௗ, therefore, a solution is stabile. 
 

3. AN ACCOUNTING OF LOAD PRIORITIES 
 

The restorable generators start giving out power and gradually increase it in restoration 
process of power system. At equal load importance, their providing on the ANN basis is carried out 
according to above the stated technique. However, different consumers define requirements to load 
restoration urgency in different degree. In this case, operational restriction on the breaker is 
prohibition on its switch on (because of repair, audit, etc.). Nevertheless, it is obvious that first of all 
it is necessary to provide auxiliary of the generator. Generally, degree of urgency is defined by 
loading priority. How there is such providing for loadings?  

If ANN is used, a task complexity is connected with a parallel search of the scheme for load 
providing. Generally, operational restriction on the breaker defines prohibition on change of the 
breaker state by the scheme search. Such approach allows using of ANN for load providing taking 
into account their priority. 

If the highest priority loads are provided, the their values, the available powers in the 
corresponding network nodes and data on the prohibited to change of breaker states are used as 
basic data (here, prohibition on switch on), if those are available, and zero loadings in all other 
nodes. The scheme of load providing for the highest priority is defined and is remembered in the 
training set of the highest priority level. Further, all breakers of network which are switched on at 
this stage are put under restriction "prohibition on change of state". Loadings of the second priority 
level are added in node data, and scheme search of load providing is carried out, including the 
second priority level. Transition to the following priority level is made on power availability of 
sources after the scheme solution for level with the highest priority. The found new solution is 
remembered in the training set of the second priority level. These operations repeat for loadings of 
each priority and stop, if the available power of sources will be settled or if the level of the lowest 
priority is provided.  

Thus, own training set is formed at each priority level, which allows putting in unambiguous 
compliance the basic data with the received decision, as it has been shown for case with one priority 
level at assessment of solution convergence on the ANN basis.  

 

Figure 4. Scheme of network 
without available power in x1 and x2 
nodes.  
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4. CONCLUSIONS 
 

A power system restoration can be automated by an ANN use for increase of its reliability. It 
allows reducing the recovery time of a power supply especially for consumers of a high priority. 

It is important to convince for network scheme search of load providing on the ANN basis 
that the solution is only for the proper data set. It is proved on the analysis basis of the elementary 
scheme and options of reduction of the network scheme to the elementary scheme that each 
combination of a breaker state does not repeat in the scheme search process of a network 
restoration, and each subsequent solution does not increase combination search function ௠݂௢ௗ, 
therefore, a solution is stabile and converges to min( ௠݂௢ௗ). 

For accounting of load priority in network scheme search by ANN means, it is necessary to 
impose condition "prohibition on the change of breaker state" for the breakers, which prohibited for 
switching on and for the breakers, which have connected loadings with higher priority. Own 
training set is formed at each priority level, which allows putting in unambiguous compliance the 
basic data with the received decision. The uniqueness of the solution has been proved earlier for the 
single priority level. 
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